Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Epilepsia ; 62(6): 1416-1428, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33949696

RESUMO

OBJECTIVE: Focal cortical dysplasia (FCD) is a major cause of difficult-to-treat epilepsy in children and young adults, and the diagnosis is currently based on microscopic review of surgical brain tissue using the International League Against Epilepsy classification scheme of 2011. We developed an iterative histopathological agreement trial with genetic testing to identify areas of diagnostic challenges in this widely used classification scheme. METHODS: Four web-based digital pathology trials were completed by 20 neuropathologists from 15 countries using a consecutive series of 196 surgical tissue blocks obtained from 22 epilepsy patients at a single center. Five independent genetic laboratories performed screening or validation sequencing of FCD-relevant genes in paired brain and blood samples from the same 22 epilepsy patients. RESULTS: Histopathology agreement based solely on hematoxylin and eosin stainings was low in Round 1, and gradually increased by adding a panel of immunostainings in Round 2 and the Delphi consensus method in Round 3. Interobserver agreement was good in Round 4 (kappa = .65), when the results of genetic tests were disclosed, namely, MTOR, AKT3, and SLC35A2 brain somatic mutations in five cases and germline mutations in DEPDC5 and NPRL3 in two cases. SIGNIFICANCE: The diagnoses of FCD 1 and 3 subtypes remained most challenging and were often difficult to differentiate from a normal homotypic or heterotypic cortical architecture. Immunohistochemistry was helpful, however, to confirm the diagnosis of FCD or no lesion. We observed a genotype-phenotype association for brain somatic mutations in SLC35A2 in two cases with mild malformation of cortical development with oligodendroglial hyperplasia in epilepsy. Our results suggest that the current FCD classification should recognize a panel of immunohistochemical stainings for a better histopathological workup and definition of FCD subtypes. We also propose adding the level of genetic findings to obtain a comprehensive, reliable, and integrative genotype-phenotype diagnosis in the near future.


Assuntos
Malformações do Desenvolvimento Cortical/diagnóstico por imagem , Malformações do Desenvolvimento Cortical/patologia , Adolescente , Adulto , Idade de Início , Diversidade de Anticorpos , Encéfalo/patologia , Criança , Pré-Escolar , Técnica Delphi , Feminino , Genótipo , Humanos , Imuno-Histoquímica , Lactente , Imageamento por Ressonância Magnética , Masculino , Malformações do Desenvolvimento Cortical/cirurgia , Pessoa de Meia-Idade , Mutação/genética , Procedimentos Neurocirúrgicos , Variações Dependentes do Observador , Fenótipo , Convulsões/etiologia , Adulto Jovem
2.
Epilepsy Res ; 148: 37-43, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30366204

RESUMO

Neuroinflammation has been shown to constitute a crucial mechanism in the pathophysiology of epileptic brain and several genes of inflammatory mediators have been detected in surgically resected hippocampus tissue but not in non-related seizure brain regions. Interestingly, it has been reported an olfactory dysfunction in frontal lobe epilepsy (FLE). Our aim was to quantify the gene expression of inflammatory-related and nitric oxide synthase genes in olfactory bulbs (OB) tissue from FLE patients. RNA was isolated from OB resection of FLE patients and autopsy subjects without any neurological disease (n = 7, each). After cDNA synthesis, we performed qPCR for interleukin-1ß (IL-1ß), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), nuclear factor κB p65 (RELA), Toll-like receptor 4 (TLR 4), its agonist high mobility group box 1 (HMGB 1) as well nitric oxide synthase isozymes (NOS 1, 2 and 3). We found a significant increase in gene expression of pro-inflammatory cytokines (IL-1ß, IL-6 and TNFα), TLR4 receptor and in its agonist HMGB1 and the downstream transcription factor NFκB p65. Moreover, we observed an increase of both NOS1 and NOS3 and a slightly increase of NOS2; however, it was not significant. Our study describes the overexpression of inflammatory-related genes and NOS isozymes in OB from FLE patients. Even though, the number of patients was limited, our findings could point out that neuroinflammation and nitrosative stress-related genes in the OB could be produced in general manner in all brain regions and thus contribute in part, to the olfactory dysfunction observed in FLE patients.


Assuntos
Citocinas/metabolismo , Epilepsia do Lobo Frontal/enzimologia , Epilepsia do Lobo Frontal/imunologia , Óxido Nítrico Sintase/metabolismo , Bulbo Olfatório/enzimologia , Bulbo Olfatório/imunologia , Adulto , Idoso , Criança , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/enzimologia , Epilepsia Resistente a Medicamentos/imunologia , Epilepsia Resistente a Medicamentos/cirurgia , Epilepsia do Lobo Frontal/diagnóstico por imagem , Epilepsia do Lobo Frontal/cirurgia , Feminino , Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
3.
Front Cell Neurosci ; 8: 442, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25601827

RESUMO

Temporal lobe epilepsy (TLE) is a chronic neurodegenerative disease with a high prevalence of psychiatric disorders. Temporal neocortex contributes to either seizure propagation or generation in TLE, a situation that has been associated with alterations of the γ-amino-butyric acid (GABA) system. On the other hand, an impaired neurotransmission mediated by GABA in temporal neocortex has also been involved with the pathophysiology of psychiatric disorders. In spite of these situations, the role of the necortical GABA system in the comorbidity of TLE and mood disorders has not been investigated. The present study was designed to identify alterations in the GABA system such as binding to GABAA and GABAB receptors and benzodiazepine site, the tissue content of GABA and the expression of the mRNA encoding the α1-6, ß1-3, and γ GABAA subunits, in the temporal neocortex of surgically treated patients with TLE with and without anxiety, and/or depression. Neocortex of patients with TLE and comorbid anxiety and/or depression showed increased expression of the mRNA encoding the γ2-subunit, reduced GABAB-induced G-protein activation in spite of elevated GABAB binding, and lower tissue content of GABA when compared to autopsy controls. Some of these changes significantly correlated with seizure frequency and duration of epilepsy. The results obtained suggest a dysfunction of the GABAergic neurotransmission in temporal neocortex of patients with TLE and comorbid anxiety and/or depression that could be also influenced by clinical factors such as seizure frequency and duration of illness.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...